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Introduction
This paper is about content-based product recommender
systems. In product recommendation, a customer is pre-
sented with a selection of products from a product cata-
logue. Content-based approaches (in contradistinction to,
e.g., collaborative approaches) select products by matching
product descriptions from the catalogue with descriptions of
customer preferences and requirements.

We will refer to each product description as a case, c, and
we will refer to the product catalogue as a case base, CB.
We assume a set of attributes, A, and, for each a 2 A, a pro-
jection function, �a, which obtains a value for the attribute
from the case. For example, �price(c) returns the value of
case c’s price attribute.

This formulation, using projection functions, has the ad-
vantage of being agnostic about the actual underlying repre-
sentation of the cases. They might, for example, be stored as
tuples in a relational database, objects in an object-oriented
database, or XML documents; all of these can support pro-
jection functions.

It also allows the possibility of what one might call virtual
attributes, where the value returned is not directly stored but
is, instead, computed or inferred from what is stored. This
is useful, for example, when the case base stores only ‘tech-
nical’ data (e.g. a car’s fuel-tank capacity, fuel consumption
and top speed) but product selection requires ‘lifestyle’ at-
tributes (e.g. the sportiness of the car). The projection func-
tions for the lifestyle attributes would infer their values from
the technical data.

The values returned by a projection function will be of
some particular type. For example, for a holiday case
base, �transport might have type ftrain; plane; car; coachg;
�season might have type fJan;Feb; : : : ;Decg; �price
might have some suitable set of numbers as its type.

To simplify this paper, we will draw a distinction at this
point between ordered types and unordered types. We will
say that an ordered type is one that has a non-trivial partial
order of its values that may be useful in product recommen-
dation. �price is an example: since its type is numeric, the
values are ordered by the usual ordering of the numbers (<).
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We will call this its base order.
An unordered type, by contrast, will be one whose values

have no non-trivial ordering that is relevant to product rec-
ommendation. Instead, we will assume that for unordered
types there exists a relevant similarity measure on the val-
ues. �transport is a probable example.

This is obviously not a proper mathematical distinction; it
is completely informal. It may not even be a distinction that
is easily drawn in practice. For example, should �season be
regarded as ordered (Jan < Feb, etc.) or not? Some types
may fall into both categories (having both a relevant base or-
dering and a relevant similarity measure); some types may
have more than one relevant base ordering or similarity mea-
sure. We need not concern ourselves with these problems
with the definitions, as the distinction is made only to make
the exposition in this paper simpler.

We will now look at two existing ways of building prod-
uct recommendation systems (Filter-Based Retrieval and
Similarity-Based Retrieval) before we present a new ap-
proach (Order-Based Retrieval).

Filter-Based Retrieval
Product recommendation systems have been built in which
customer preferences and requirements are encoded using
what we will call filters. Filters are absolute: products either
satisfy them or they do not. Only products that satisfy the
filters are recommended to customers.

For example, predicates such as equality and inequality
can be used to compare an attribute value in a case c to a
customer-provided value, e.g. �transport(c) 6= coach. In
the case of attributes whose types are ordered, we can addi-
tionally use <, �, > and �, e.g. �price(c) < 900. Local fil-
ters (on individual attributes) can be composed into a global
filter (on whole cases), e.g. using conjunction.

The problems with Filter-Based Retrieval for product
recommendation are well-documented (?). In particular,
the customer’s filter may be satisfied by no products at
all. Dialogues with such systems can exhibit a form of
‘stonewalling’.

Similarity-Based Retrieval
The CBR community has pioneered an alternative way of
building product recommendation systems, using similarity



measures, �. A customer supplies ‘ideal’ values for some
or all of the attributes. The degree of similarity between at-
tribute values in cases and these ‘ideal’ values can be com-
puted by local similarity measures. The degree of similarity
of cases in the case base to the ‘ideal’ case is computed by a
global similarity measure which aggregates the local degrees
of similarity. The cases with the highest degrees of similar-
ity to the ‘ideal’ case are the ones to be recommended to the
customer. (There are variants of this approach, the most no-
table being the one that is embodied in the Entrée system;
we will discuss this in a later section of this paper.)

The well-recognised advantage over Filter-Based Re-
trieval is that the result-set will never be empty. Systems
built this way can offer commercial benefits (?); and their
advantages are being confirmed by empirical experiments
(?).

A disadvantage of using ‘pure’ Similarity-Based Retrieval
is that it allows the customer to supply only ‘ideal’ values.
For example, the customer can specify a preferred price (to
retrieve cases that have similar prices), but the customer can-
not specify a maximum price. The customer can specify a
preferred holiday season, but not a dispreferred one.

In the remaining sections of this paper, a novel ap-
proach to content-based product recommendation is pre-
sented. Similarity still has a role to play (though its role is
diminished). The new approach allows customers to specify
values other than ‘ideal’ ones, without resorting to the use
of filters.

Order-Based Retrieval
A key observation is that the success of Similarity-Based
Retrieval rests on its ability to order the cases in the case
base, rather than to filter them. Similarity is being used to
obtain an ordering: if we call the customer’s ‘ideal’ case c,
then case ci 2 CB is lower in the ordering than case cj 2 CB
iff �(ci; c) < �(cj; c).

But, using the relative similarities of cases to an ‘ideal’
case is only one way of ordering a case base. In what we
will call Order-Based Retrieval, product recommendation
will be based on the application of partial orders: the cus-
tomer will supply a variety of information (preferred values,
dispreferred values, maximum values and minimum values,
for example) and we will construct an ordering relation from
this information; we can use this to sort the case base, or to
obtain the maxima of the case base.

There is a connection here with utility theory. In util-
ity theory, the basic notion is a preference relation, which
captures an agent’s preferences among states. This relation
has to satisfy certain axioms. If it does, then there exists at
least one corresponding utility function, i.e. a function that
gives numeric scores to the states in a way which reflects the
preferences. The advantage of having numeric scores is that
these can be combined with state probabilities to compute
expected utilities. With this, we can build decision-making
agents that choose among (non-deterministic) actions based
on the expected utilities of the states that may result from
those actions.

It may be worth exploring the idea that the partial orders
that we will use in Order-Based Retrieval are the preference

relations used in utility theory. However, we will not ex-
plore this further here. It remains to be seen whether it is
worth adopting the axiomatisation used for preference re-
lations; and it remains to be seen whether casting product
selection as decision-making between actions with multiple
uncertain outcomes brings any advantages to simple web-
based e-commerce systems.

Operators for Order-Based Retrieval
In this section, we define a number of operators for con-
structing partial orders. In the way that we list them here,
their usefulness may not be immediately apparent. But they
are exemplified in subsequent sections of this paper. The
reader should skim this section on first reading, and then
refer back to it as necessary when working through the ex-
amples.

In these definitions, x, y and, where appropriate, v may
be attribute-values or whole cases.

We begin with an operator that constructs a partial order
from a filter, then one that constructs a partial order from a
similarity measure, and then two more that construct a par-
tial order from an existing partial order:

Filter-Ordering (FO): Given a unary predicate, p, which
would ordinarily act as a filter, we can construct an order-
ing from p as follows:

x <FO(p) y =̂ :p(x) ^ p(y)

The definitions says that x is lower than y iff y satisfies p
but x does not.

Similarity-Ordering (SO): Given a similarity measure, �,
and an ‘ideal’ value, v, then x is lower than y iff x’s sim-
ilarity to v is lower than y’s similarity to v:

x <SO(�;v) y =̂ �(x; v) < �(y; v)

Inverse-Ordering (IO): Given a partial order, <, the in-
verse is also a partial order:

x <IO(<) y =̂ x > y

About-Ordering (AO): Given a partial order, <, and an
‘ideal’ value v, then a new ordering can be defined by
‘breaking the back’ of the existing ordering at v. Values
will be ordered by their distance from v in the original
ordering:

x <AO(<;v) y =̂ (x < y � v) _ (x > y � v)

We now give two operators that compose two existing par-
tial orders, <1 and <2, into a single partial order.

Non-Contradiction-Ordering (NCO): For x to be lower
than y in this compound ordering requires that it be lower
in at least one of the two partial orders and not higher in
the other:

x <NCO(<1;<2) y =̂

(x <1 y ^ x 6>2 y) _ (x <2 y ^ x 6>1 y)

The consequences of this definition are: if x is less than
y in both, then x is less than y in the result; if x is less



than y in one, but incomparable to y in the other, then x is
less than y in the result; if x is less than y in one but x is
greater than y in the other, then x and y are incomparable
in the result.

Less-Strict-Prioritisation-Ordering (LSPO): Here, <1

takes precedence over <2. In effect, the ordering is based
on <1 but, when <1 judges two values to be equal or
incomparable, the ‘tie’ is broken using <2:1

x <LSPO(<1;<2) y =̂

x <1 y _ ((x 6<1 y ^ y 6<1 x) ^ x <2 y)

Many more operators could be given, but these form a
good starting point for building Order-Based Retrieval prod-
uct recommendation systems, as we will now illustrate.2

Finding a Holiday
The examples we use to illustrate our operators are mostly
based on the holiday case base that is available from the AI-
CBR web site (?). Our examples use the following attributes
from this case base: duration, accomm, price and season.
We do, however, pretend that the cases have an extra at-
tribute: hotel facilities (e.g. whether the hotel takes credit
cards, has a swimming pool, etc.).

The right holiday duration : : :

To keep our diagrams manageable, we will assume that the
type of �duration is a small set: f5; 6; : : : ; 13; 14g. This is
what we called earlier an ordered type: there is a relevant
and non-trivial base ordering, viz: 5 < 6 < : : : < 13 < 14.

Suppose that our customer specifies that s/he wants a hol-
iday of 7 or more days. We can define a unary predicate that
expresses this: �x[x � 7]. But we do not want to use this
as a filter, as this could give us the problems associated with
Filter-Based Retrieval. Instead, we can construct an ordering
from this predicate using the Filter-Ordering (FO) operator:

Example 1 We want a holiday lasting no fewer than 7 days
<FO(�x[x�7])

7 8 9 10 11 12 13 14
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1Some readers may be wondering why this operator is called
Less-Strict-Prioritisation-Ordering. In earlier work (?), we intro-
duced an operator very similar to this one, which we later came to
call Strict Prioritisation (?). In Strict Prioritisation, a ‘tie’ is de-
fined as equality. In Less-Strict-Prioritisation, a ‘tie’ is defined as
equality or incomparability: it is less strict in its definition!

2Some readers may note similarities between this paper and
one we published in 1996 (?). One or two of the diagrams in the
next section, in particular, may be reminiscent of the earlier paper.
There are connections, but also differences. The goal of the 1996
paper was the definition of similarity measures, whereas here par-
tial orders are primary. And, while Inverse-Ordering and About-
Ordering (called best in (?)) are common to both papers, there are
new operators herein.

If we were to sort the case base using this relation, holidays
of 7 or more days’ duration (if any) would be ranked above
other holidays. Crucially, however, holidays lasting fewer
than 7 days are not filtered away; they are simply dispre-
ferred.

Suppose the customer must not take a holiday of more
than 12 days. Again, we would apply the FO operator, this
time to the predicate �x[x � 12]:

Example 2 We can’t take more than 12 days’ holiday
<FO(�x[x�12])
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We can combine these two orderings into a single order-
ing relation using the Non-Contradiction-Ordering operator:

Example 3 No fewer than 7 days and no more than 12 days
<NCO(<FO(�x[x�7]) ;<FO(�x[x�12]) )

7 8 9 10 11 12
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This might be the ordering the customer chooses to ap-
ply to the case base. But let us take the example one stage
further. Suppose the customer goes on to specify that s/he
would prefer a holiday of around 9 days. We can apply the
Around-Ordering operator to �duration’s base ordering:

Example 4 We’d prefer it to last about 9 days, <AO(<;9)
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We can now combine (??) and (??) into a single ordering
using the Less-Strict-Prioritisation-Ordering operator:

Example 5 No fewer than 7 days, no more than 12, but then
around 9
�LSPO(<NCO(<FO(�x[x�7]) ;<FO(�x[x�12]) )

;<AO(<;9))
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This exactly captures the customer’s stated preferences: hol-
idays lasting fewer than 7 or more than 12 days are lower in
the ordering, but otherwise the values are ordered by their
distance from 9 days.

This example also illustrates a common ‘template’. A typ-
ical query is often constructed in this way. The ‘constraints’
that other approaches would consider to be filters, we con-
vert to orders using FO. We combine these using NCO.
And then we use LSPO to prioritise this over some other
ordering. Here, the other ordering was the ‘around 9’ order-
ing, but it could just as well have been the base ordering or
the inverse of the base ordering, as we will see in subsequent
examples.

The right accommodation : : :

The type of �accomm is an ordered type. In its base order-
ing, hotel categories (star ratings) are ordered in the obvious
way; Holiday Flat accommodation is incomparable (neither
less than nor greater than) these hotel categories:

Example 6 The base ordering of �accomm, <accomm

*
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*****

HolidayFlat

Suppose our customer does not want to stay in a Holiday
Flat (self-catering is too much effort):

Example 7 We don’t want a holiday flat
<FO(�x[x6=HolidayFlat])

* ** *** **** *****
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S/he will not stay in a one-star hotel (too basic):

Example 8 We don’t want a one-star hotel
<FO(�x[x6=*])
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Nor will s/he stay in a 5-star hotel (too luxurious!):

Example 9 We don’t want a 5-star hotel
<FO(�x[x6=*****])
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We can combine (??), (??) and (??) using NCO:

Example 10 Not a flat and not a one-star nor a five-star
hotel
<NCO(<

FO(�x[x6=HolidayFlat]) ;<FO(�x[x 6=*])
;<

FO(�x[x6=*****])
)
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* ***** HolidayFlat
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Finally, within these ‘constraints’, our customer would
otherwise like the best accommodation available. The rel-
evant ordering here is, in fact, the base ordering (??). So,
we combine (??) with (??) using LSPO:

Example 11 Not a flat, not a one-star nor a five-star hotel,
but otherwise as good as possible
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Suppose instead our customer wanted something around
3-stars (rather than the best available):

Example 12 We want something around 3-stars
<AO(<accomm;***)
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We would then use LSPO to combine (??) with (??):

Example 13 Not a flat, not a one-star nor a five-star hotel,
but otherwise something like a three-star hotel
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The right price : : :

To keep our diagrams manageable, we will as-
sume that the type of �price is a small set:
f400; 500; 600;700; 800; 900;1000; 1100g. Again, this
is an ordered type: 400 < 500 < : : : < 1000 < 1100.

Suppose that our customer specifies that s/he wants to
spend less than $900:

Example 14 We want to spend less than $900
<FO(�x[x<900])

400 500 600 700 800
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@

@@

�

��

�
�
�
��

�
�
�
�
�
�

H
H
H
HH

@

@@

�

��

�
�
�
��

P
P
P
P
P
P

H
H
H
HH

@

@@

�

��

Suppose s/he then goes on to say that she additionally
wants the cheapest holiday possible. The base ordering for
�price orders holidays by increasing cost. To order holidays
cheapest-first requires that we apply Inverse-Ordering to the
base ordering:



Example 15 We want it to be as cheap as possible, <IO(<)

400

500

...

1000

1100
Now we will see what happens when we use LSPO to

combine (??) and (??):

Example 16 Less than $900 and otherwise as cheap as pos-
sible, <LSPO(<FO(�x[x<900]) ;<IO(<))

400
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1100
It turns out, in this example, that the customer ‘constraint’
that the holiday cost less than $900 is redundant in the light
of the preference for the cheapest holiday.

On the other hand, if the customer had said that s/he
wanted a holiday costing around $600, we would have used
AO:

Example 17 We’d expect to pay around $600, <AO(<;600)
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And we would then have used LSPO to combine (??) and
(??):

Example 18 Less than $900 and otherwise around $600
<LSPO(<FO(�x[x<900]) ;<AO(<;600))
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The right hotel facilities : : :

We will now give an example using an attribute that does
not appear in the original holiday case base (?) but which
shows how we would handle set-valued attributes. Different

hotels have different facilities, usually shown in brochures
using collections of little icons. We will use only three icons:
S means the hotel has a swimming pool, P means the

hotel has parking and C means the hotel accepts credit

cards. The type of �facilities is therefore }f S ; P ; C g,

i.e. subsets of the set f S ; P ; C g. This is an ordered type:

Example 19 The base ordering of �facilities, <facilities

f S g

f S ; P g

;

f P g

f S ; C g

f S ; P ; C g

f C g

f P ; C g
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(A slightly different example could be given in which sets
are ordered by their cardinalities rather than by set inclusion.
In this case, the order would be a total one.)

Our customer wants a hotel that accepts credit cards:

Example 20 We want to pay by credit card
<
FO(�S[ C 2S])

f S g f S ; P g ; f P g

f S ; C g f S ; P ; C g f P ; C g f C g
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S/he wants us to prioritise (??) over a desire for as many
facilities as possible (??) (the base ordering):

Example 21 We want to pay by credit card but otherwise as
many facilities as possible
<LSPO(<

FO(�S[ C 2S])

;<facilities)

f S g

f S ; P g

;

f P g

f S ; C g

f S ; P ; C g

f C g

f P ; C g
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The right season : : :

All the examples so far have involved attributes that have
ordered types. Therefore, the base ordering usually plays a
role somewhere. But we will now look at an example using
an unordered type, where there is no base ordering (or, at



least, none that we shall make use of). In the case of the
season attribute, we will assume that we have a similarity
measure on months of the year, instead of a base ordering.

First, assume the customer does not want to holiday in
January:

Example 22 We don’t want to go in January
<FO(�x[x6=Jan])

Feb Mar : : : Dec
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S/he also does not want to holiday in Feb, Mar, Oct, Nov
or Dec (individual diagrams not shown). We put all these
together using NCO:

Example 23 Not in Jan-Mar nor in Oct-Dec
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But our customer would like to holiday in a month such
as August. We will assume that our similarity measure,
�season, when it compares the different months to August,
returns the following degrees of similarity:

Jan 0.17 Apr 0.33 Jul 0.83 Oct 0.67
Feb 0.0 May 0.5 Aug 1.0 Nov 0.5
Mar 0.17 Jun 0.67 Sep 0.83 Dec 0.33

This gives us an ordering:

Example 24 Months like August, <SO(�season;Aug)

Aug

Jul,Sep

Jun,Oct

May,Nov

Apr,Dec

Jan,Mar

Feb

We can then use LSPO to combine the dispreferred
months (??) with months like August (??):

Example 25 Not Jan-Mar nor Oct-Dec but otherwise some-
thing like August

Aug

Jul,Sep
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Oct
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Jan,Mar

Feb
By this point in the paper, we have shown lots of interest-

ing examples. There is no shortage of other, quite innova-
tive possibilities. For example, suppose the customer prefers
months like August to months like December. How would
we express this as an ordering?

It is actually done quite simply. First, we construct a filter,
but one which makes use of �season. This filter takes in a
month, x, and iff x’s similarity to August is greater than its
similarity to December, then x satisfies the filter. Then, we
convert the filter to an ordering using FO:

Example 26 We prefer months like August to months like
December
<FO(�x[�season(x;Aug)>�season(x;Dec)])
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Rather than give any more examples of this kind, we will
now move on to other matters.

Putting them together : : :

Our examples have, so far, all been attribute-specific (al-
though, of course, any of them can be used to order whole
cases, rather than just attribute values). We must now con-
sider what we would do when orders are specified on two or
more different attributes. In fact, the NCO and LSPO oper-
ators are useful here too. We will proceed again by example.

Suppose our customer wants a holiday of no fewer than
7 days and no more than 12 days. This would be ordering
(??) but, rather than being an ordering simply on integers, it
would be used to order whole cases. S/he wants a holiday
lasting around 9 days. This would be ordering (??), again
applied to whole cases. S/he also doesn’t want to stay in
a flat, a one-star hotel or a five-star hotel. This would be
ordering (??) applied to whole cases. And s/he wants the
best accommodation available. This would be ordering (??)
applied to whole cases.

Our customer might then combine (??) and (??) using
LSPO. S/he might also use LSPO to combine (??) with



(??). Finally, these two orderings can be combined using
NCO. Part of the resulting order is shown below:

Example 27 We want a holiday lasting no fewer than 7
days, no more than 12 days, but otherwise lasting about 9
days, and we want to stay in neither a flat, a one-star hotel
nor a five-star hotel but otherwise we want the best accom-
modation possible
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Example (??) has demonstrated that one way of combin-
ing orders on different attributes is to use our NCO and
LSPO operators. Different applications of NCO and LSPO
may give different results. (In some cases, however, the
same ordering might result. It is a matter of future work
to develop and prove algebraic equivalences using these op-
erators.) Rather than demonstrate this any further, let us now
look at another couple of ways of combining orders on dif-
ferent attributes.

In Similarity-Based Retrieval, overall degrees of similar-
ity are computed by a global similarity measure, typically
by taking a weighted average of local, attribute-specific de-
grees of similarity. The weights allow some indication of the
relative importances of the different attributes.

There is, of course, nothing to prevent the use of weighted
averages in Order-Based Retrieval. If we have several at-
tributes with unordered types (such as season), we can com-
bine their similarity measures into a global similarity mea-
sure prior to using the SO operator.

This gives us good compatibility with existing technol-
ogy. Whether we should exploit this compatibility is a more
complicated question. (In (?), we have argued that the exact
effects of weighting schemes are not always obvious; cus-
tomers may not find it easy to achieve definite effects by
changing weights. Other approaches, including the one em-
bodied in the Entrée system, may be more suitable.)

To conclude this section, we will mention one more, in-
teresting possibility. In Order-Based Retrieval, we might be
able to express dependencies between the values of different
attributes. A simple example, which requires no new oper-
ators, is to construct a filter using material implication ()),
and to then use FO to construct an order from this filter. For
example, a customer might say that if s/he must stay in a
holiday flat, then s/he expects the holiday price to be less
than $700. The filter

�x[(�accomm(x) = HolidayFlat)) (�price(x) < 700)]

is satisfied by cases in which either the accommodation is
a holiday flat and the price is less than $700, or by cases

in which the accommodation is not a holiday flat. We can
construct an order from this using FO (in the way that is
amply illustrated elsewhere in this paper).

It is our intention to investigate other ways of construct-
ing orders that capture dependencies, perhaps making fur-
ther use of connectives such as material implication.

Entrée-Style Retrieval
The way most content-based product recommendation sys-
tems work is as follows. The customer supplies some prefer-
ences and requirements by filling in an on-screen form. On
the basis of the values supplied, the system retrieves and dis-
plays one or more product descriptions. It will often be the
case that the customer will not be immediately satisfied with
the displayed products (or there may be some other reason
why s/he wishes to see further products). In most systems,
the customer must return to the on-screen form, and alter
the data s/he entered. If the customer is trying to achieve a
definite effect (e.g. to see cheaper holidays), this can be a
cumbersome form of query refinement.

The Entrée system (and systems based on it) offer a more
natural form of query refinement (?). These systems allow
the customer to select a product that is displayed on the
screen and then launch queries that seek products that are
similar to the selected product but which differ from it based
on customer critiques: they seek products that are “like this
but different”. The critique is sometimes also called a tweak.

We will examine, in more detail, how tweaks are imple-
mented in Entrée. The kind of tweaks that a customer can re-
quest, and the way they are implemented, depend on whether
the attribute that is being critiqued has an unordered type or
an ordered type.

Suppose the critiqued attribute at has an unordered type,
e.g. season. In this case, a substitution is made. The cur-
rent value of at, call it vt, in the selected case, c, is replaced
by a value, v0

t
, that is provided by the customer. For exam-

ple, suppose the customer has taken a liking to a particular
holiday c that is being displayed on the screen, but in this
holiday season = Apr and s/he would prefer season = Jul.
The value Apr is replaced by Jul in c to give c0. Similarity-
Based Retrieval is then used to find cases from the case base
that are similar to c0.

Suppose, on the other hand, that in case c the critiqued
attribute at has an ordered type, e.g. price. Again, let the
current value of at be vt. The customer can tweak case c

by asking to see cases in which at > vt or cases in which
at < vt. For example, if the holiday s/he has taken a liking
to, c, costs $1000, s/he might ask to see holidays that are
cheaper than c. Entrée takes such tweaks to be filters. Only
cheaper holidays are sought. Within the cheaper holidays,
Similarity-Based Retrieval is used to find those that are most
similar to c.

This way of implementing tweaks is open to two criti-
cisms:

� Tweaks on ordered attributes are treated as filters. This
can give the usual problems associated with Filter-Based
Retrieval.



� The two kinds of tweaks have different semantics. For
unordered types, the tweaks are interpreted as a way of
ordering cases (using similarity); for ordered types, the
tweaks are absolute filters on cases.

Robin Burke writes “ : : : in the interest of uniformity, our
newer implementation : : : treats all tweaks as filters : : : ”
(?). While this newer implementation overcomes the second
criticism, it makes the first criticism all the more pertinent.

We can implement tweaks in Order-Based Retrieval, and
we can do so in a way that overcomes both criticisms above.
Very simply, both tweaks are encoded as filters but then con-
verted into orders using Filter-Ordering, FO. For example,
in the case of season, the tweak becomes <FO(�x[x=Jul]),
which will rank holidays in July above holidays in other
months. And, in the case of price, the tweak becomes
<FO(�x[x<1000]), which will rank holidays costing less than
$1000 above holidays costing $1000 or more. This gives a
uniform semantics and in neither case is the semantics ab-
solute. These tweaks can then be composed into the rest of
the query. (In Order-Based Retrieval, the rest of the query
would apply SO and AO to the values of the non-tweaked
attributes.)

Order-Based Retrieval might even allow new kinds of
tweaks. For example, suppose the system has retrieved some
cases and presented them to the customer. The customer
might be allowed to state a simple preference between two
cases (or two values). E.g. s/he might say that she prefers
case 3 to case 7. From just this simple preference, we
can construct a new ordering that can be composed into
the query. The simplest new ordering is the one in which
c7 < c3 and all other pairs of cases are incomparable. A
more sophisticated version would capture the idea that cases
that are more similar to c3 than they are to c7 are preferred.
This would be done in a way that is similar to example (??).

Conclusions
This paper proposes a change of perspective. It points
out that Similarity-Based Retrieval in content-based product
recommendation systems is really about ordering the case
base. And so it suggests that we should be prepared to adopt
any number of other ways of allowing the customer to con-
struct orders on attribute-values and on cases.

The paper provides only a starting point in such a venture
by proposing six operators for constructing orders. There
are numerous ways of proceeding from here.

Firstly, there needs to be a more systematic exploration of
ways of combining orders. In this paper, we have looked at a
typical way of constructing a single ordering from a number
of more basic ones. We need to find out which ways give the
best results in practice. And we need to state and prove some
equivalences and non-equivalences (for example, if P and
Q are filters, then <FO(P^Q) is not necessarily the same as
<NCO(<FO(P );<FO(Q)), because NCO is not the same as the
conjunction of two orders). Example (??) illustrates that we
should also look for subsumption relationships and, perhaps,
other relationships.

Secondly, we note that Order-Based Retrieval seems to
offer a rich set of ways of constructing queries, but this

richness can only be properly exploited if we can make it
meaningfully available through our human-computer inter-
face. This has to be the subject of further investigation.

Finally, we need to investigate implementations, espe-
cially in terms of their performance on large data sets and
‘typical’ customer requests. (In our current implementation,
for example, we compute the maxima of an ordering applied
to a case base of size n using an algorithm whose worst-
case time-complexity is O(n2). By contrast, its best-case
time-complexity is linear; its performance on what we think
might be ‘typical’ customer requests is often closer to the
best-case than to the worst-case.)
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